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Abstract. This study addresses the problem of accurately forecasting financial markets in 
emerging economies, specifically focusing on the Moroccan All-Share Index (MASI) which 
lacks dedicated research. Motivated by the need to provide a clear and comprehensive 
comparison for local and international investors, this paper evaluates two prominent time series 
models: the classical ARIMA model and the deep learning-based LSTM network. The 
methodology involves using a time series of daily MASI closing prices from January 4, 2010, 
to August 8, 2025, which was chronologically split into a training sample (80%) and a test 
sample (20%). The models' out-of-sample performance was then rigorously evaluated using 
key error metrics. The results reveal a significant disparity in performance. The LSTM model 
delivered drastically superior accuracy with an MAE of 178.52 and an RMSE of 272.69, vastly 
outperforming the ARIMA model which yielded an MAE of 1917.74 and an RMSE of 2751.31. 
This demonstrates that the LSTM’s ability to capture complex, non-linear dependencies is far 
more effective for forecasting the MASI index than the linear assumptions of the ARIMA 
model. The study concludes that deep learning methods offer a more reliable approach for 
financial forecasting, with practical implications for investors who can use LSTMs to make 
better-informed trading decisions and for analysts who can incorporate these models for more 
nuanced market surveillance and risk management. 
Keywords: MASI Index, Forecasting, ARIMA Model, LSTM model, Deep Learning, MAE, 
RMSE. 

1. Introduction 
Forecasting financial markets represents a fundamental challenge for investors, policymakers, 
and researchers, as it equips them with critical insights essential for making informed 
investment decisions, managing financial risks, and supporting the overall stability of economic 
systems. Accurate market predictions help to anticipate price movements, allocate resources 
efficiently, and formulate regulatory policies that mitigate systemic risks. However, the task of 
forecasting financial time series is notoriously difficult due to the markets’ intrinsic 
characteristics, high volatility, nonlinear dependencies, structural breaks, and evolving 
dynamics that often defy simple modeling assumptions. 

Traditional statistical methods, notably the Autoregressive Integrated Moving Average 
(ARIMA) model, have long been employed for financial time series forecasting. ARIMA's 
ability to capture linear relationships, seasonal effects, and short-term dependencies has made 
it a staple in econometric analysis. Yet, despite its extensive use and interpretability, ARIMA 
frequently struggles to model the complex, chaotic, and non-stationary features inherent in 
financial data, especially when market conditions shift abruptly or when long-range 
dependencies are present. 

The rise of artificial intelligence, and in particular deep learning techniques, has transformed 
the landscape of financial forecasting. Among these, the Long Short-Term Memory (LSTM) 
neural network, a variant of recurrent neural networks, is distinguished by its capacity to learn 
long-term temporal dependencies and model nonlinear, non-stationary patterns effectively. 
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LSTM networks have demonstrated promising results in capturing the subtle and often hidden 
temporal structures within financial data that traditional models may overlook. This has sparked 
an active debate in the literature regarding the comparative advantages of statistical models 
versus deep learning frameworks across different market contexts and asset classes. 

Despite the global proliferation of forecasting studies, most focus predominantly on well-
established markets in developed economies, leaving emerging markets less explored. These 
emerging economies often exhibit unique market behaviors influenced by differing regulatory 
frameworks, market liquidity, investor composition, and macroeconomic conditions. In 
particular, region-specific indices like the Moroccan All-Share Index (MASI), a pivotal 
benchmark of the Casablanca Stock Exchange, have received limited scholarly attention in 
terms of advanced forecasting techniques. This paucity of research leaves investors and 
policymakers without tailored insights relevant to the Moroccan financial environment. 

The importance of this study is therefore twofold. First, it addresses a significant research gap 
by evaluating the forecasting performance of both traditional and deep learning models on the 
MASI index, thereby providing empirical evidence from an emerging market context that 
remains underrepresented in the literature. Second, the outcomes of this research hold practical 
implications for investors and policymakers alike: improved forecasting accuracy can enhance 
investment strategies, optimize portfolio management, and strengthen risk mitigation in a 
market characterized by volatility and evolving dynamics. By bridging the divide between 
global forecasting methodologies and regional market realities, this study contributes both to 
academic knowledge and to the practical advancement of financial decision-making in 
Morocco. The originality of this work lies in its pioneering focus on the Moroccan All-Share 
Index (MASI) using a comparative framework between ARIMA and LSTM models, an 
approach rarely applied to North African markets. Its added value stems from providing 
context-specific insights that enrich the forecasting literature on emerging economies, while 
offering investors and policymakers actionable evidence to support more resilient financial 
strategies. 

The remainder of the paper is structured as follows: Section 2 reviews the relevant literature; 
Section 3 presents the data and methodology; Section 4 discusses the empirical results; and 
Section 5 concludes with key findings and implications. 

2. Literature review 
This literature review provides a comprehensive, chronologically ordered analysis of research 
comparing time series forecasting models, with a primary emphasis on the traditional 
Autoregressive Integrated Moving Average (ARIMA) model and the deep learning-based Long 
Short-Term Memory (LSTM) network. The review is divided into two sections to distinguish 
between studies focusing on other markets and those in financial markets, highlighting the 
diverse performance and applicability of these models across different domains. 

a. Non financial Markets 
The performance of forecasting models in non-financial contexts often depends on the unique 
characteristics of the dataset, such as linearity and seasonality.  

Elmasdotter and Nyströmer (2018) conducted a comparative study of LSTM and ARIMA for 
sales forecasting in the retail industry, motivated by a desire to reduce food waste. Their 
analysis, using RMSE and MAE, revealed no statistically significant difference between the 
models for a one-day-ahead forecast. However, for a seven-day-ahead prediction, the LSTM 
model demonstrated a statistically significant higher accuracy, suggesting its superiority for 
longer forecasting horizons in this domain. Nasser and Etem (2021) also focused on non-
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financial applications, comparing LSTM and ARIMA for hourly energy consumption 
forecasting in the western USA. Both models achieved a high performance, with LSTM and 
ARIMA yielding R-squared metrics of 97% and 98%, respectively.  
Moving to the domain of environmental science, Khan (2022) performed a methods case study 
comparing LSTM and traditional (S)ARIMA models for forecasting indoor air pollution in 
Canada and Sweden. Khan noted that while (S)ARIMA models are limited to making linear 
predictions from a single variable, the deep learning LSTM model is capable of producing more 
precise nonlinear forecasts using multivariate inputs, thereby preventing memory loss. 

In the real estate sector, Albeladi et al (2023) compared LSTM and ARIMA for time series 
forecasting using a dataset from Mulkia Gulf. Contrary to some other findings, their research 
concluded that the ARIMA model was better suited for this specific type of time series 
forecasting, based on the mean average of the basic evaluation parameters. Similarly, Trisya et 
al. (2024) compared the forecasting performance of ARIMA, LSTM, and Support Vector 
Machine (SVM) models for predicting monthly electricity consumption from 1985–2018. The 
study found that while ARIMA(1,0,1) provided reasonable forecasts with an RMSE of 7.659, 
it struggled with high-precision requirements. LSTM handled complex, nonlinear patterns 
better than ARIMA but had higher RMSE values (best case = 11.4183), while SVM 
outperformed both with the lowest RMSE (0.020) for short-term predictions. The authors 
concluded that SVM offered the highest accuracy for short-term forecasts, LSTM was useful 
for modeling nonlinear dependencies, and ARIMA provided interpretable results for simpler 
patterns. 
Shifting to macroeconomic forecasting, Hamiane et al (2024) conducted a comparative study 
on forecasting quarterly U.S. GDP data from 1947 to 2022. They examined LSTM, ARIMA, 
and a hybrid ARIMA–LSTM approach. Their research revealed that the hybrid model delivered 
the highest predictive accuracy. This was attributed to its ability to merge the linear trend 
modeling capability of ARIMA with the nonlinear pattern detection strength of LSTM. The 
standalone LSTM model performed strongly, while the ARIMA model recorded a lower R². 

Finally, Yanuar et al. (2024) conducted a comparative study of ARIMA and LSTM models to 
predict sea level rise in Jakarta. The study found that the ARIMA (1,1,4) model was more 
effective, producing lower error values MAE, MAPE and RMSE than the LSTM model. The 
authors concluded that the optimal predictive model is highly dependent on the dominant 
physical processes of the specific region. 

b. Financial Markets 
The literature on financial markets often emphasizes the challenges of forecasting due to market 
volatility and chaotic behavior, leading many studies to favor deep learning over traditional 
methods. 

Fischer and Krauss (2018) were among the first to explore the effectiveness of LSTM networks 
for financial market predictions. They deployed LSTMs to predict out-of-sample directional 
movements for S&P 500 stocks from 1992 to 2015. The study found that LSTMs outperformed 
other memory-free classification methods, yielding daily returns of 0.46% and a Sharpe ratio 
of 5.8 before transaction costs. They noted, however, that the outperformance seemed to have 
been arbitraged away after 2010.  
However, the majority of research leans toward deep learning models. Siami-Namini et al 
(2018), using historical monthly financial time series data from indices like Nikkei 225 and 
S&P 500, found that LSTM significantly outperformed ARIMA, with an average reduction in 
error rates between 84% and 87%.  
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In a separate empirical study, Yamak et al (2019), who compared ARIMA, LSTM, and GRU 
for forecasting Bitcoin prices. Their study found that the ARIMA model produced the best 
results, outperforming both deep learning models for this specific forecasting task. 
A different conclusion was reached by Siami-Namini et al (2019) who conducted a comparative 
analysis of ARIMA, LSTM, and BiLSTM models for financial time series forecasting. They 
found that while ARIMA was adequate for stationary data, it failed to capture the nonlinear 
structures inherent in financial markets. Both LSTM and BiLSTM outperformed ARIMA in 
accuracy, with BiLSTM delivering the best results by leveraging information from both past 
and future time steps.  This trend continued with Hua (2020) who conducted a comparative 
study of LSTM and ARIMA to predict Bitcoin prices. The author found that while both models 
could perform well, the LSTM model achieved a better performance, though it required 
significant training time. The ARIMA model's precision, in contrast, decreased as the 
forecasting time grew.  Putri and Halim (2020) also compared ARIMA and LSTM for 
predicting EUR/USD exchange rates. The results showed that LSTM produced a lower RMSE 
than ARIMA, indicating better prediction results due to its ability to learn from and utilize a 
large amount of data. Similarly, Ma (2020), in a comparative study of ARIMA, ANN, and 
LSTM for stock price prediction, found that while ARIMA and ANN have their own advantages 
and disadvantages, the LSTM model may have the best predictive ability, but its performance 
is highly dependent on data processing. 
Moving to the development of hybrid models, Li et al (2022) introduced the ARIMA -LSTM 
framework, which incorporates an ARIMA model as a technical feature within an LSTM 
network. The model was tested on the CSI 300, Nikkei 225, and S&P 500 indices and found to 
outperform other models, although the performance gain from adding the single ARIMA vector 
was not significant. 

Xiao et al. (2022) further reinforced the superiority of deep learning models in their comparison 
of ARIMA and LSTM for stock price forecasting using daily data from 50 listed companies. 
The study found that while ARIMA is computationally efficient, it struggles with the nonlinear 
and volatile nature of stock prices, and LSTM outperformed ARIMA in accuracy, especially in 
modeling short-term fluctuations. 
In 2023, several studies continued this line of inquiry. García, et al(2023) compared ARIMA, 
LSTM, and a hybrid model for foreign exchange prediction. They found that while ARIMA is 
effective for short-term forecasting, its effectiveness decreases for longer periods, and 
concluded that hybrid models, which combine linear (ARIMA) and non-linear (LSTM) 
methods, can increase the accuracy of predictions. In a similar finding, Wu et al (2023) 
compared ARIMA and LSTM for time series prediction and found that the LSTM neural 
network model provided better predictions, attributing this to its ability to learn from past data. 

Additionally, Gonçalves et al (2023) compared ARIMA and LSTM for forecasting Brazil 
IBX50 closing prices. They found that ARIMA performed better for data points closer to the 
training data, while LSTM was a more reliable source of prediction for longer forecast 
windows. Latif et al. (2023), who assessed the prediction of Bitcoin prices using ARIMA and 
LSTM, found that when the forecast model was re-estimated at each step, the LSTM model 
consistently surpassed ARIMA. Unlike ARIMA, which only tracked the trend, LSTM was able 
to predict both the direction and value of prices. 

Yavasani and Wang (2023) also compared ARIMA, LSTM, and GRU for predicting stock 
prices across three economic sectors. The study found that recurrent neural networks (LSTM 
and GRU) were more effective than the statistical ARIMA model, with GRU consistently 
performing the best. 
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Recent research in 2024 has continued to highlight the strengths of deep learning and hybrid 
approaches. Abu Talib et al (2024) conducted a comparative analysis of ARIMA, LSTM, and 
GRU for financial time series forecasting of companies like Apple and Tesla. Their findings 
indicate that while ARIMA is effective for linear trends, deep learning models, particularly 
LSTM, demonstrated superior predictive accuracy in handling the nonlinear and volatile 
dynamics of financial markets. In a similar study, Holm and Åkesson (2024) conducted a 
comparative study of ARIMA and LSTM for forecasting the OMX Stockholm 30 (OMXS30) 
index. Their findings showed that for a 7-day forecast, both models had similar accuracy. 
However, for a 30-day forecast, the LSTM model outperformed ARIMA, while for a 60-day 
forecast, ARIMA yielded better results. García et al (2024) conducted a comparative analysis 
between LSTM and BiLSTM for foreign exchange forecasting. They noted that while ARIMA 
has been widely used, neural networks have now surpassed it, and that recurrent neural 
networks like LSTM perform better than classical econometric models for short-term 
predictions. In the Moroccan context, Lahboub and Benali (2024) tested ARIMA, LSTM, and 
transformers for forecasting stock prices. The results showed that the LSTM model achieved 
high accuracy, with R-squared values over 0.99 for two of the companies and over 0.95 for the 
third. 

The hybrid model approach was further validated by Mochurad and Dereviannyi (2024), who 
proposed an ensemble forecasting procedure that integrated LSTM and ARIMA models. This 
hybrid approach was shown to be superior to using either method individually, achieving a 
significant 15% improvement in root mean square error (RMSE) compared to the standalone 
LSTM model. 
Similarly, Anilkumar et al (2024) conducted a comparative analysis of ARIMA and LSTM for 
stock price prediction. They concluded that while ARIMA models are computationally efficient 
and interpretable, LSTM networks are better at capturing complex temporal relationships in 
time series data. In another study, Kirelli (2024) compared LSTM and ARIMA for forecasting 
Oracle stock prices. The study found that while the LSTM model had lower error values for 
MSE, MAE, and RMSE, the ARIMA model had a lower MAPE and was found to produce 
proportionally more accurate forecasts. The author concluded that the final choice of model 
should depend on the prioritized metrics. 
Zhang (2024), in a comparative study of LSTM and ARIMA for stock price forecasting using 
five major global stock indices, found that the LSTM model consistently outperformed the 
ARIMA model, achieving significantly lower MSE and RMSE values. This was attributed to 
LSTM's ability to handle non-linear relationships and “abnormal fluctuations”. 
In another study, Asha et al (2024) analyzed the performance of ARIMA, LSTM, and 
FBProphet for predicting stock market values. The study concluded that each method has its 
own strengths: ARIMA for steady linear data, LSTM for nonlinear relationships, and 
FBProphet for trend and seasonality. 
Looking ahead, Alharbi (2025) examined forecasting the stock price of Saudi Basic Industries 
Corporation (SABIC) using a hybrid ARIMA–LSTM model. The study found that this hybrid 
approach consistently outperformed both individual ARIMA and LSTM models across all 
evaluation metrics, demonstrating its superior accuracy and robustness. 
Pilla and Mekonen (2025) conducted a comparative study of ARIMA and LSTM to forecast 
the S&P 500 index. The LSTM model significantly outperformed ARIMA, achieving an 
accuracy of 96.41% compared to ARIMA's 89.8%. The authors concluded that LSTM networks 
are a powerful tool for handling the volatile, nonlinear, and complex nature of financial data. 
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Finally, Zheng et al (2025) evaluated the forecasting effectiveness of the ARIMA and LSTM 
models for financial time series prediction. They found both models to be effective, noting that 
the LSTM model's strength lies in its ability to analyze nonlinear relationships, while the 
ARIMA model is suitable for simpler, linear markets. They also highlighted that an LSTM 
network ensemble improved prediction and reduced overfitting, with an average relative error 
compared to ARIMA's average relative error. 

3. Data and Methodology 
a. Data 

The forecasting of the MASI index using both the ARIMA and LSTM models was conducted 
on a time series dataset of daily closing prices. The data covers a comprehensive period from 
January 4, 2010, to August 8, 2025. The period 2010–2025 was selected as it ensures reliable 
and consistent data coverage for the MASI index, provides a sufficiently long horizon to capture 
both short- and long-term market dynamics, and includes recent events such as the COVID-19 
crisis and subsequent recovery. This extensive timeframe provides also a sufficiently large 
sample size for both model training and robust out-of-sample evaluation. The MASI (Moroccan 
All-Share Index) is the main stock market index for the Casablanca Stock Exchange (Bourse 
de Casablanca) in Morocco.1 It is a capitalization-weighted index that tracks the performance 
of all listed companies on the exchange, providing a comprehensive measure of the overall 
health and performance of the Moroccan stock market.2 As such, forecasting the MASI index 
is a relevant task for market participants, investors, and economic analysts interested in the 
Moroccan financial landscape. For model validation, the dataset was split chronologically. The 
training sample consisted of the first 80% of the data, while the remaining 20% was designated 
as the test sample. This approach ensured that the models were trained exclusively on past 
information and then evaluated on unseen, future data, providing a realistic assessment of their 
predictive performance. 
The daily closing prices of the Moroccan All-Share Index (MASI) covering the period 2010–
2025 were obtained from Investing.com, a widely used financial data platform that provides 
free access to historical market data for global equity indices, commodities, currencies, and 
other financial instruments. 

b. Methodology 
This study employs two prominent approaches for forecasting the Moroccan All-Share Index 
(MASI): the Autoregressive Integrated Moving Average (ARIMA) model and the Long Short-
Term Memory (LSTM) neural network. Both models are formulated mathematically and 
implemented to capture different characteristics of financial time series. 
We used the daily closing prices of the MASI index for both ARIMA and LSTM models, as 
the objective is to forecast the future level of the index rather than short-term returns. 

i. ARIMA Model 
The Autoregressive Integrated Moving Average (ARIMA) model is a 

classical statistical method used for time series forecasting (Box and 
Jenkins, 1970). It combines three core components to capture different 
aspects of a dataset's behavior: autoregression, differencing, and moving 
average. The model is typically denoted as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞), where each 
parameter represents the order of its respective component. 
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Components of ARIMA 

• Autoregressive (AR) Component (𝑝): This part of the model assumes that the current 
value of the time series, (𝑦!) , is a linear combination of its own past values. The order 
refers to the number of lagged observations included in the model. 

• Integrated (I) Component (𝑑): This component involves a differencing operation 
applied to the time series to make it stationary. A stationary series is one whose 
statistical properties (mean, variance, and autocorrelation) are constant over time. The 
order 𝑑 indicates the number of times the data has been differenced. 

• Moving Average (MA) Component (𝑞): This part of the model assumes that the current 
value is a linear combination of past forecast errors. The order 𝑞 represents the number 
of lagged forecast errors in the model.  

Mathematical Formulation 

The full 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)	model is formulated by combining these 
components into a single equation. The general form is: 

𝜙(𝐵)(1 − 𝐵)"𝑦! = 𝜃(𝐵)𝜀! 
Where: 

𝑦! is the value of the time series at time 𝑡. 

𝐵 is the backshift operator, such that 𝐵𝑦! = 𝑦!#$ 

𝑑 is the degree of differencing. The term (1 − 𝐵)" represents the 
differencing operation. 

𝜙(𝐵) is the autoregressive polynomial of order 𝑝 : 

𝜙(𝐵) = 1 − 𝜙$𝐵 − 𝜙%𝐵% −⋯− 𝜙&𝐵& 

𝜃(𝐵) is the moving average polynomial of order 𝑞: 

𝜃(𝐵) = 1 + 𝜃$𝐵 ∓ 𝜃%𝐵% ∓⋯+ 𝜃'𝐵' 

𝜀! is the white noise error term at time 𝑡. 

The coefficients 𝜙( and 𝜃) are the model parameters that are estimated 
from the data. 

Forecasting 
To effectively evaluate a forecasting model, a time series dataset must be 
partitioned into a training sample and a test sample. This method, often 
referred to as a train-test split, is fundamental for assessing how well a 
model generalizes to unseen data. 
 

Data Splitting 

The first step is to divide the historical data into two distinct, non-
overlapping sets. 
§ Training Sample: This portion of the data (e.g., 80% of the total dataset) 

is used to fit the model. The model learns the underlying patterns, trends, 
and seasonal components from this historical data. For ARIMA model, 
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this is where the parameters are estimated and the model's weights are 
optimized. 

§ Test Sample: This is the remaining portion of the data (e.g., the last 
20%). The model has no prior exposure to this data. It is used to evaluate 
the model's performance by comparing its forecasts against the actual 
values in this test set. This provides an unbiased measure of the model's 
predictive accuracy. 

Model Fitting 
The ARIMA model is fitted to the training sample. The optimal 

parameters (𝑝, 𝑑, 𝑞) are determined using methods like the Autocorrelation 
Function (ACF) and Partial Autocorrelation Function (PACF) plots or by 
minimizing information criteria like AIC or BIC. The model learns the 
coefficients (𝜙( and 𝜃)) that best describe the training data's behavior. 

Forecasting and Evaluation 
Once the models are fitted, they are used to generate predictions. 
§ Forecasting: The trained model is used to forecast future values for the 

period covered by the test sample. For example, if the test set contains 
data for the last 100 days, the model will generate a 100-step-ahead 
forecast. 

§ Comparison: The forecasted values are then compared to the actual, 
observed values in the test sample. 

§ Performance Metrics: The difference between the forecasted and actual 
values is quantified using various performance metrics, such as, Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean 
Absolute Percentage Error (MAPE), Coefficient of Determination (𝑅%) 
These metrics provide a quantitative assessment of each model's 

predictive accuracy. A model is considered to have better forecasting 
performance if it consistently yields lower error values (MAE, RMSE, 
MAPE) and a higher 𝑅% on the unseen test data. 

ii. LSTM model 
The Long Short-Term Memory (LSTM) model, introduced by 

Hochreiter and Schmidhuber (1997), is a specialized type of neural 
network designed for processing and forecasting time series data. 

 Unlike traditional neural networks, LSTMs have a unique architecture 
that allows them to remember important information from long sequences 
of data while forgetting irrelevant details. This is achieved through a core 
component called the memory cell, which acts like a conveyor belt, 
carrying information forward through time. 

The flow of information within an LSTM is regulated by three main 
“gates”: 
• Forget Gate: This gate decides what information from the past is no 

longer needed and can be discarded. 
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• Input Gate: This gate determines which new information from the 
current time step is important enough to be stored in the memory cell. 

• Output Gate: This gate controls what information from the memory cell 
is used to produce the output for the current time step. 

This gated mechanism allows LSTMs to effectively handle time series 
data with complex, long-term dependencies, making them particularly 
well-suited for tasks such as financial market prediction, where patterns 
from the distant past can be crucial for understanding current behavior. 

The following equations represent the flow of information through a 
single LSTM unit at time step 𝑡. 

- Forget Gate (𝒇𝒕) 
The forget gate decides which information from the previous cell state 
(𝐶!#$) should be discarded. It takes the previous hidden state (ℎ!#$) and 
the current input (𝑥!), and outputs a value between 0 and 1, where 0 means 
"completely forget" and 1 means "completely keep". 

𝑓! = 𝜎>𝑊+(ℎ!#$, 𝑥!) + 𝑏+A 

𝜎 is the sigmoid function, which squashes the values to a range between 0 
and 1. 

𝑊+ and 𝑏+ are the weight matrix and bias vector for the forget gate. 

(ℎ!#$, 𝑥!) is the concatenation of the previous hidden state and the current 
input. 

- Input Gate (𝒊𝒕) and Candidate Cell State (𝑪D𝒕) 
The input gate decides which new information from the current input (xt) 
should be stored in the cell state. It has two parts: 

§ The input gate layer (𝑖!)  uses a sigmoid function to determine which 
values to update. 

§ The tanh layer (𝐶F!) creates a vector of new candidate values that could 
be added to the state. 

𝑖! = 𝜎(𝑊((ℎ!#$, 𝑥!) + 𝑏() 

𝐶F! = 𝑡𝑎𝑛ℎ(𝑊,(ℎ!#$, 𝑥!) + 𝑏,) 

§ 𝑊(, 𝑊,  and 𝑏(, 𝑏,  are the weight matrices and bias vectors for the input 
gate and candidate cell state, respectively. 

tanh is the hyperbolic tangent function, which squashes the values to a 
range between -1 and 1. 

- New Cell State (𝑪𝒕) 
The new cell state is created by combining the previous cell state, the 
forget gate's decision, and the input gate's decision. This is where the old 
information is forgotten and new information is stored. 

𝐶! = 𝑓! ⊛𝐶!#$ + 𝑖! ⊛𝑪D𝒕 
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⊛ denotes element-wise multiplication. 
 

d. Output Gate (𝑜!) and Hidden State (ℎ!) 
The output gate decides what part of the new cell state will be the final 
output of the LSTM unit. The output is filtered and used to create the new 
hidden state (𝒉𝒕), which is then passed on to the next time step. 

𝑜! = 𝜎(𝑊-(ℎ!#$, 𝑥!) + 𝑏-) 

ℎ! = 𝑜! ⊛ 𝑡𝑎𝑛ℎ(𝐶!) 

𝑊- and 𝑏- are the weight matrix and bias vector for the output gate. 

ℎ! is the new hidden state, which also serves as the final output for the 
current time step. 
Forecasting with the LSTM Model 

To evaluate the forecasting performance of an LSTM (Long Short-Term 
Memory) model, a time series dataset must be partitioned into a training 
sample and a test sample. This method is fundamental for assessing how 
well the model generalizes to unseen data. 

Data Splitting 
First, the historical data is divided into two distinct, non-overlapping 

sets. 
§ Training Sample: This portion of the data is used to fit the model. The 

LSTM network learns the underlying patterns, trends, and seasonal 
components from this historical data. During this stage, the network's 
weights and biases are optimized through an iterative training process. 

§ Test Sample: This is the remaining, chronologically later portion of the 
data. The model has no prior exposure to this data. It is reserved for 
evaluating the model's performance by comparing its forecasts against 
the actual values in this set. This provides an unbiased measure of the 
model's predictive accuracy. 

For time series data, it is crucial to use a chronological split, where the 
training data precedes the test data. Randomly splitting the data would 
introduce future information into the training process, leading to look-
ahead bias, which results in unrealistically optimistic performance metrics. 

Model Fitting 
The LSTM network is trained on the training sample. The preprocessed 

data is formatted into sequences of input-output pairs. The network then 
learns the weights and biases through an optimization process (e.g., Adam 
optimizer) by minimizing a loss function (e.g., Mean Squared Error) over a 
defined number of epochs. 
Forecasting and Evaluation 

After fitting the model, it is used to generate predictions, which are then 
evaluated against the test sample. 
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a. Forecasting: The trained model generates forecasts for the future period 
covered by the test sample. For example, if the test set contains data for 
the last 100 days, the model will generate a 100-step-ahead forecast. 

b. Comparison: The forecasted values are compared to the actual, observed 
values in the test sample. 

c. Performance Metrics: The difference between the forecasted and actual 
values is quantified using various performance metrics to provide a 
quantitative assessment of the model's predictive accuracy. A model is 
considered to have better forecasting performance if it consistently 
yields lower error values (MAE, RMSE, MAPE) and a higher 𝑅% on the 
unseen test data. 

4. Results and discussion 
a. Results of ARIMA model applied to MASI index series 

§ Results of the ADF test applied to MASI index series 
The objective of this section is to examine the stationarity of the MASI index using the ADF 

test. The analysis will focus on both the original series and the differenced series to determine 
whether a transformation is necessary to achieve stationarity. The results are presented in table 
1. 

Table 1: ADF test applied to MASI index series 

Test ADF Statistic 
1% Critical 

Value 
5% Critical 

Value 
10% Critical 

Value 

Original Series 1.4316 -3.43 -2.86 -2.57 

Differenced 
Series -15.5039 -3.43 -2.86 -2.57 

The ADF test for the original MASI series produced an ADF Statistic of 1.4316. This value 
is greater than all the critical values at 1%, 5% and 10% (-3.43, -2.86, and -2.57). This result 
leads us to fail to reject the null hypothesis, which states that the time series has a unit root and 
is non-stationary. Therefore, we conclude that the original MASI series is non-stationary. 

The ADF test for the differenced MASI series yielded an ADF Statistic of -15.5039. This 
value is significantly smaller than all the critical values at 1%, 5% and 10% (-3.43, -2.86, and -
2.57). This allows us to reject the null hypothesis and conclude that the differenced series is 
stationary. This means that taking the first difference of the data successfully removed the non-
stationarity, making the series suitable for analysis with ARIMA model that requires this 
assumption. Based on this result, we'll set the differencing order, 𝑑, to 1.  
§ Selecting optimal parameters of ARIMA  

When a forecasting time series using ARIMA model, it's essential to select the best set of 
parameters. A common challenge is balancing a model's goodness of fit (how well it explains 
the historical data) with its complexity (the number of parameters used). A model that fits the 
data perfectly might be too complex and perform poorly on new, unseen data, a phenomenon 
known as overfitting. To address this, we use statistical criteria like the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC). The goal is to find the model 
with the lowest AIC and BIC values, as this indicates the most efficient and robust model.  
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The following table lists the AIC and BIC scores for each ARIMA(𝑝,1,𝑞) model where 0 ≤
𝑝 ≤ 3 and 0 ≤ 𝑞 ≤ 3.. The results of the grid search are as follows. 

Table 2: AIC and BIC scores for ARIMA(𝑝,1,𝑞) with 0 ≤ 𝑝 ≤ 3 and 0 ≤ 𝑞 ≤ 3 

Model AIC Score BIC Score 

ARIMA(0,1,0) 45303.99 45310.26 

ARIMA(0,1,1) 45255.67 45268.20 

ARIMA(0,1,2) 45210.67 45229.46 

ARIMA(0,1,3) 45212.50 45237.57 

ARIMA(1,1,0) 45245.53 45258.07 

ARIMA(1,1,1) 45229.41 45248.21 

ARIMA(1,1,2) 45212.50 45237.56 

ARIMA(1,1,3) 45214.37 45245.70 

ARIMA(2,1,0) 45214.92 45233.71 

ARIMA(2,1,1) 45213.56 45238.62 

ARIMA(2,1,2) 45214.50 45245.83 

ARIMA(2,1,3) 45215.71 45253.30 

ARIMA(3,1,0) 45212.40 45237.47 

ARIMA(3,1,1) 45213.05 45244.38 

ARIMA(3,1,2) 45214.99 45252.58 

ARIMA(3,1,3) 45216.96 45260.82 

The results of the grid search for optimal ARIMA parameters show that: 
ü ARIMA(0,1,2) has the lowest AIC score of 45210.67 and the lowest BIC score of 45229.46. 

This makes it the optimal model according to both criteria among all the tested 
configurations. 

ü The AIC and BIC scores for ARIMA(0,1,2) are significantly lower than those of simpler 
models like ARIMA(0,1, 0) (AIC: 45303.99, BIC: 45310.26) and ARIMA(1, 1, 0) (AIC: 
45245.53, BIC: 45258.07). This suggests that including a moving average component of 
order 2 is crucial for accurately modeling the time series. 

ü The results also show that ARIMA(3,1,0) and ARIMA(2,1,0) are the second-best options 
based on AIC and BIC, respectively. However, their scores are still higher than ARIMA(0, 
1, 2), confirming that the latter is the most suitable choice. 

In conclusion, based on the lowest AIC and BIC values, the ARIMA(0,1,2) model is the 
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most optimal configuration for forecasting the MASI index. 

§ Forecasting the MASI Index with ARIMA(0,1,2) model 
This section presents the results of a time series forecast for the MASI index. The forecasting 

was performed using an ARIMA(0,1,2) model, which was selected as the optimal model in a 
previous analysis based on its low AIC and BIC scores. The objective of this exercise is to 
evaluate the model's performance by comparing its predictions to actual market data. The 
forecast is generated for a specific test period, allowing us to assess how well the ARIMA(0,1,2) 
model captures the dynamic movements of the MASI index. 

The following figure illustrates the model's performance, displaying the historical data, the 
actual prices in the test set, and the prices forecasted by the model.  

 
Figure 1: Forecasting MASI index using ARIMA(0,1,2) model 

This figure shows the actual MASI prices over time, split into training and test sets, and the 
forecasted prices for the test set. Initially, the forecast seems to roughly follow the trend, but it 
quickly flattens out and remains relatively constant. This suggests that the ARIMA(0,1,2) 
model, while capturing the differencing aspect (𝑑 = 1), may not be fully capturing the 
underlying patterns and volatility in the MASI index to provide accurate long-term forecasts. 
The significant divergence between the actual test prices and the forecasted prices in the later 
part of the test set indicates that the model's predictive power is limited over this horizon with 
the current parameters. 

§ Forecasting Errors (MAE and RMSE) 
To assess the predictive accuracy of the ARIMA(0,1,2) model, we calculated the two error 

metrics, the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE). These 
metrics provide a quantitative measure of how closely our model's forecasts align with the 
actual values, which is essential for determining its reliability. The results are presented in table 
3. 

Table 3: Accuracy of the ARIMA(0,1,2) model measured by MAE and RMSE 

Mean Absolute Error (MAE) Root Mean Squared Error (RMSE) 

1919.67 2754.37 
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The high values for both the MAE (1919.67) and RMSE (2754.37) indicate that the 
ARIMA(0,1,2) model's predictions are quite high relative to the scale of the MASI index prices. 

§ Residuals of the ARIMA(0,1,2) model  
After fitting a time series model ARIMA(0,1,2), it's crucial to analyze the residuals (the 

errors between the actual values and the model's predictions). This step is essential to ensure 
the model is valid and has captured all the relevant information in the data. The following figure 
presents a plot of the residuals from the fitted ARIMA(0,1,2) model. 

 
Figure 2: Plot of the residuals of the ARIMA(0,1,2) model 

This plot shows the difference between the actual training prices and the prices predicted by 
the fitted ARIMA(0,1,2) model on the training data. Ideally, the residuals should look like white 
noise, random, centered around zero, and with no discernible patterns. In this plot, the residuals 
appear mostly centered around zero after an initial large value, but there might be some 
clustering or periods of higher volatility. Examining the ACF and PACF of the residuals will 
provide more formal insights into whether they are truly random. 

§ Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of the 
residuals for ARIMA(0,1,2) model 
After fitting an ARIMA model, it's crucial to check if the residuals are random and contain 

no remaining patterns. If the residuals are not random, it means our model hasn't captured all 
the information in the data, and there's room for improvement. We use two important plots to 
analyze the randomness of residuals, the Autocorrelation Function (ACF) plot and the Partial 
Autocorrelation Function (PACF) plot. ACF Plot shows the correlation between residuals at 
different lag periods. PACF Plot shows the partial correlation between residuals at different lag 
periods, removing the influence of intermediate lags. Figures 1 and 2 show respectively the 
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of the residuals 
for ARIMA(0,1,2) model. 
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Figure 3: Autocorrelation Function (ACF) of Residuals for ARIMA(0,1,2) model 

 

 
Figure 4 : Partial Autocorrelation Function (PACF) of residuals for ARIMA(0,1,2) model 

Ideally, for a well-fitted ARIMA(0,1,2) model, the residuals should be uncorrelated, 
meaning most of the spikes in the ACF and PACF plots should fall within the blue shaded area 
(which represents the confidence interval for zero correlation). In figure 4, most of the lags are 
within the confidence intervals, suggesting that the ARIMA(0,1,2) model has captured most of 
the linear dependencies in the differenced series. There might be a few small spikes just outside 
the confidence interval, which could warrant further investigation or consideration of different 
model orders. 
§ QQ-plot of residuals 

After fitting a time series model, it's important to check the assumptions about the residuals 
(the model's errors). One key assumption in many statistical analyses is that the residuals are 
normally distributed. The QQ-plot (Quantile-Quantile plot) is a graphical tool used to assess 
this assumption. The QQ-plot works by comparing the quantiles of our residuals' distribution 
against the quantiles of a theoretical normal distribution. If the residuals are normally 
distributed, the points on the plot will fall roughly along a straight diagonal line. Any significant 
departure from this line, especially at the ends (the “tails”), indicates that the residuals may not 
be normally distributed. The following plot shows whether the residuals from our 
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ARIMA(0,1,2) model align with a normal distribution. Figure 5 displays the QQ-plot of 
Residuals for ARIMA(0,1,2) model. 

 
Figure 5: QQ-plot of Residuals for ARIMA(0,1,2) model 

 
The QQ-plot shows some deviation from the red line, particularly at the tails (the points in 

the upper right and lower left corners are further away from the line). The point in the upper 
right corner is notably far off the line. This suggests that the residuals may not be perfectly 
normally distributed, which is an assumption of some statistical tests applied to ARIMA 
models. However, deviations from normality in residuals are not uncommon in financial time 
series. 

§ Ljung-Box test on residuals 
After fitting a time series model, it's crucial to ensure that the residuals are random. The 

Ljung-Box test is a formal statistical method used to check for any remaining autocorrelation 
in these residuals. The test's null hypothesis (H0) states that the residuals are independently 
distributed, meaning there is no significant autocorrelation. The alternative hypothesis (Ha) 
suggests that there is autocorrelation. We perform this test to formally confirm what we might 
observe from the ACF and PACF plots. If the test's p-value is high (typically greater than 0.05), 
we fail to reject the null hypothesis, which gives us confidence that our model has successfully 
captured all the linear patterns in the data. 

The Ljung-Box test statistic, also known as the Q-statistic is equal to 4.3787. The p-value is 
equal to 0.999903. This is the probability of observing a test statistic as extreme as 4.3787, 
assuming the residuals are truly random. In hypothesis testing, we compare the p-value to a 
significance level (e.g., 0.05). Since our p-value (0.999903) is much greater than 0.05, we fail 
to reject the null hypothesis. The conclusion is that there is no significant autocorrelation in the 
residuals up to lag 20. This supports the idea that the ARIMA(0,1,2) model has adequately 
captured the linear dependencies in the data, leaving uncorrelated residuals.  

The ARIMA(0,1,2) model is statistically adequate for capturing the MASI’s linear 
dependencies, with uncorrelated residuals and optimal AIC/BIC scores. However, its 
forecasting power, particularly for capturing volatility and longer-term patterns, is limited, as 
shown by the high error metrics and flattening forecasts. 
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b. Results of LSTM model 
To prepare the MASI index data for the LSTM model, the time series was first preprocessed. 

The data was split into training and test sets, with 80% of the data used for training and the 
remaining 20% for testing. To improve model stability and performance, the price data was 
scaled to a range between 0 and 1 (using the MinMaxScaler). 

The LSTM model architecture consisted of a sequential stack of layers. The input layer was 
configured with a time step of 60, meaning the model was trained to predict the next day's price 
based on the previous 60 days of data. The network itself was composed of two LSTM layers, 
each with 50 units, followed by a single dense output layer with one unit to produce the final 
price prediction. 

For training, the model was compiled using the “Adam” optimizer and the “mean squared 
error” loss function. The training process was run for 10 epochs with a batch size of 32. These 
parameters were chosen to ensure the model had sufficient opportunities to learn the underlying 
patterns in the time series data. 

§ Price forecasting by LSTM model 
To evaluate the forecasting performance of the LSTM model on the MASI index, a visual 

comparison between actual and forecasted prices was conducted. The following plot illustrates 
how well the model captures the index’s dynamics over the test period by juxtaposing historical 
training data, test data, and the model’s forecasts. This graphical representation provides an 
intuitive assessment of the model’s ability to track the underlying trends and movements of the 
MASI index. Figure 6 shows the actual and forecasted prices of MASI index using LSTM 
model. 

 
Figure 6: Forecasting MASI index using LSTM model 

 

This plot visually compares the actual MASI prices (training and test) with the predicted 
prices on the test set. The LSTM model demonstrates a reasonable ability to forecast the MASI 
index, as reflected in the visual alignment between predicted and actual prices during the test 
period. The predicted values generally follow the direction and overall trend of the actual test 
set prices, indicating that the model effectively captures the broad movements of the index. 
However, some deviations are observed, particularly in periods of higher volatility, where the 
model tends to smooth out sharp price changes. This behavior suggests that while the LSTM 
can model the underlying temporal patterns and trend dynamics, it may have limitations in fully 
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replicating short-term fluctuations or abrupt market shifts, which are common in financial time 
series. 

§ Error metrics: 
The LSTM model’s predictive accuracy was assessed using two widely used error measures, 

the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results are 
presented in table 4. 

Table 4: Accuracy of the LSTM model measured by MAE and RMSE 

Mean Absolute Error (MAE) Root Mean Squared Error (RMSE) 

178.52 272.69 

The value MAE =178.52 reflects that on average, the model’s predictions deviate from the 
actual MASI prices by about 178.52 points during the test period. This metric treats all errors 
equally, regardless of their direction or magnitude, making it a straightforward indicator of 
overall accuracy. The value RMSE = 272.69 reflects the typical size of prediction errors but 
penalizes larger errors more heavily due to the squaring process before averaging. An RMSE 
of 272.69 means that, in general, the magnitude of the model’s prediction errors is around 
272.69 points, with bigger mistakes contributing disproportionately to this measure. 

The relatively low values of both metrics, especially when compared to the overall scale of 
the MASI index, suggest that the LSTM model provides a strong fit to the test data. However, 
the higher RMSE compared to MAE also indicates that occasional larger prediction errors 
occurred, likely during periods of heightened volatility or abrupt price movements. 

§ Training Loss Curve Plot 
To monitor the learning progress of the LSTM model, the evolution of the training loss; 
measured as the mean squared error, was tracked across 10 epochs. This curve provides insight 
into how quickly and effectively the model adapted to the training data. By examining the loss 
trend, we can assess whether the model converged to an optimal solution, overfitted, or 
underfitted during the training process. Figure 7 displays the training loss curve of the LSTM 
model. 

 
Figure 7: Training Loss Curve of the LSTM model 
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The training loss curve displays a steep decline during the initial epochs, indicating that the 
LSTM model quickly captured the most prominent patterns in the MASI index data. This rapid 
early improvement is typical in deep learning, as the model first learns broad structural 
relationships before refining finer details. In subsequent epochs, the loss decreases more 
gradually, suggesting that the model shifted from learning general patterns to optimizing 
smaller, more complex relationships in the data. The absence of any upward trend in the loss 
indicates that overfitting was not evident during the 10-epoch training period, and the model 
achieved stable convergence toward a satisfactory solution. 

Comparison the performance of ARIMA and LSTM models  
For forecasting the MASI index, the ARIMA(0,1,2) and LSTM models show distinct 

performance characteristics. ARIMA(0,1,2) captures linear dependencies well, as evidenced by 
uncorrelated residuals and optimal AIC/BIC scores, but its forecasts tend to flatten and produce 
high errors (MAE: 1919.67, RMSE: 2754.37), indicating limited ability to track volatility and 
complex patterns. In contrast, the LSTM model, a deep learning approach designed to capture 
nonlinear temporal dependencies, demonstrates superior predictive accuracy (MAE: 178.52, 
RMSE: 272.69), effectively following the overall trend of the index while smoothing extreme 
short-term fluctuations. The LSTM’s training loss curve shows rapid convergence without 
overfitting, reflecting efficient learning of underlying patterns. Overall, while ARIMA(0,1,2) 
provides a reliable linear baseline, the LSTM model outperforms it in capturing the dynamic 
and nonlinear behavior of the MASI index, making it better suited for forecasting in volatile 
financial markets. 

c. Comparison with previous studies 
Our study's findings, which show the superiority of the LSTM model over the ARIMA model 

for forecasting the MASI index, aligns with a significant body of recent literature on financial 
time series forecasting. 

As our results demonstrated, the LSTM model was more effective at capturing the complex, 
non-linear dynamics of the MASI index. This finding is consistent with the conclusions of 
several studies. For example, Siami-Namini et al (2019) found that LSTM and BiLSTM models 
significantly outperformed ARIMA for various financial indices, with an average error rate 
reduction of up to 87%. Similarly, Xiao et al. (2022) concluded that LSTM's ability to handle 
the non-linear and volatile nature of stock prices makes it superior to the computationally 
efficient but linear-dependent ARIMA model. The findings of Zhang (2024), who also found 
that LSTM consistently outperformed ARIMA for major global stock indices, further reinforce 
our conclusion that deep learning models are better suited for this type of data. 

Our observation that the ARIMA model struggled to capture the volatility and abrupt 
movements in the MASI index is also a common theme in the literature. While ARIMA models 
are effective for linear trends and stationary data, as noted by Siami-Namini et al (2018), they 
often fall short in financial markets. Pilla and Mekonen (2025)'s study on the S&P 500 index 
supports this, with LSTM significantly outperforming ARIMA due to the latter's inability to 
handle the “volatile, non-linear, and complex nature of financial data”. 

However, it's important to acknowledge studies that have yielded different results. Our 
findings contrast with some research, particularly in non-financial contexts or for specific 
financial assets. For instance, Yamak et al (2019) found that ARIMA produced the best results 
for forecasting Bitcoin prices, a finding that runs counter to our own. Similarly, Khulood 
Albeladi et al. (2023) concluded that ARIMA was more suitable for a specific real estate dataset. 
These discrepancies highlight that the optimal model is often highly dependent on the specific 
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characteristics of the dataset, as suggested by Yanuar et al. (2024) in their study on sea level 
rise. 

The literature also points to a growing trend of using hybrid models to combine the strengths 
of both linear and non-linear approaches. Our conclusion that future research could explore 
hybrid models is supported by studies like those of Hamiane et al. (2024) and Mochurad and 
Dereviannyi (2024), both of which found that hybrid ARIMA-LSTM models delivered superior 
predictive accuracy by leveraging the linear trend modeling of ARIMA and the non-linear 
pattern detection of LSTM. This suggests a promising avenue for future work to potentially 
improve upon the results of our standalone LSTM model. 

Finally, our study contributes to the limited literature on the Moroccan financial market. 
While studies like Lahboub and Benali (2024) have shown the high accuracy of LSTM for 
forecasting specific Moroccan stock prices, our research provides a comparative analysis on a 
broader index level (MASI), further solidifying the case for adopting deep learning methods in 
this specific market context. 

5. Conclusion 
This study aimed to forecast the MASI (Moroccan All Shares Index) using both classical 

and modern approaches, namely the ARIMA(0,1,2) model and a Long Short-Term Memory 
(LSTM) deep learning neural network. Preliminary analysis revealed that the MASI index 
series is non-stationary and becomes stationary after first differencing, indicating that it is 
integrated of order 1. The ARIMA model parameters were selected through a systematic grid 
search, optimizing both the Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) to achieve the best balance between model fit and complexity. While 
ARIMA(0,1,2) model successfully captured the linear dependencies in the MASI series, as 
confirmed by residual diagnostics, its forecasting performance was limited, producing high 
error metrics and forecasts that smoothed out the index’s volatility and abrupt movements. 

In contrast, the LSTM model demonstrated strong predictive capability, accurately capturing 
the overall trends and temporal dependencies in the MASI index. The relatively low MAE and 
RMSE, combined with a stable training loss curve, indicate that the model learned efficiently 
without overfitting. Although the LSTM tended to smooth extreme short-term fluctuations, it 
outperformed ARIMA in forecasting accuracy and in handling the nonlinear and complex 
dynamics inherent in financial time series. 

Overall, the results suggest that deep learning models like LSTM are more suitable for 
modeling and forecasting volatile stock market indices than traditional linear models such as 
ARIMA.  

The findings of this study have several important practical implications for market 
participants and researchers focused on the Moroccan financial market. For investors and 
traders, the superior performance of the LSTM model suggests that strategies relying on 
forecasting the MASI index should leverage deep learning methods for more reliable 
predictions. A more accurate predictive model can lead to better-informed decisions, potentially 
increasing profitability and reducing risk. Financial analysts at institutions in Morocco should 
also consider incorporating deep learning models into their analytical toolkit for a more nuanced 
understanding of market movements, which is essential for risk management and portfolio 
optimization. Furthermore, this study serves as a foundational step for future research into 
forecasting the MASI index, encouraging further exploration of more advanced deep learning 
architectures, such as hybrid models that combine the strengths of both traditional and deep 
learning approaches. 
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Despite the promising results, this study has several limitations. First, it focuses exclusively 
on the MASI index, which may limit the generalizability of the findings to other Moroccan or 
emerging market indices. Second, only historical daily data were used, so short-term intraday 
patterns, high-frequency fluctuations, and long-term structural changes were not captured. 

Future research could explore the development of a hybrid ARFIMA–LSTM model, which 
combines the strengths of both approaches. While ARFIMA effectively captures long-memory 
linear dependencies commonly present in financial time series, LSTM excels at modeling 
nonlinear and complex temporal patterns. By applying ARFIMA to extract the long-memory 
structure and then using LSTM to learn the residual nonlinear dynamics, such a hybrid model 
could improve forecast accuracy and better capture abrupt market movements. 
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